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Abstract We study the electronic structure of two types

of transition metal complexes, the inverted-sandwich-type

and open-lantern-type, by the electronic stress tensor. In

particular, the bond order be measured by the energy den-

sity which is defined from the electronic stress tensor is

studied and compared with the conventional MO-based

bond order. We also examine the patterns found in the

largest eigenvalue of the stress tensor and corresponding

eigenvector field, the ‘‘spindle structure’’ and ‘‘pseudo-

spindle structure’’. As for the inverted-sandwich-type

complex, our bond order be calculation shows that relative

strength of the metal-benzene bond among V, Cr, and Mn

complexes is V [ Cr [ Mn, which is consistent with the

MO-based bond order. As for the open-lantern-type com-

plex, we find that our energy density-based bond order can

properly describe the relative strength of Cr–Cr and

Mo–Mo bonds by the surface integration of the energy

density over the ‘‘Lagrange surface’’ which can take into

account the spatial extent of the orbitals.

Keywords Wave function analysis � Theory of chemical

bond � Stress tensor � Transition metal complexes

1 Introduction

The stress tensors in quantum systems have been investi-

gated for many years, including one of the earliest quantum

mechanics papers [1–20]. The stress tensors in general are

widely used for the description of internal forces of matter

in various fields of science such as mechanical engineering

and material science. As for the stress tensors in quantum

mechanics context, we can find several different definitions

and applications in the literature. For example, Ref. [6] and

followers focus on the stress tensor, which is associated

with forces on nuclei. In contrast, the one we consider in

this paper is the electronic stress tensor, which is associated

with effects caused by internal forces acting on electrons in

molecules, following Ref. [12]. This electronic stress ten-

sor has been used to investigate chemical bonds and

reactions, and many interesting properties have been dis-

covered [12, 15, 16, 20–27].

Among them, it is shown that the energy density can be

defined from the electronic stress tensor. Using this energy

density, new definition of bond order is proposed [21]. So

far, this stress-tensor-based bond order is applied to s-block

and p-block compounds in Refs. [21, 22, 27] and found to

have reasonable features. Then, next question is whether

this bond order would work well for d-block compounds.

In this paper, we wish to address this issue using two

types of transition metal complexes. The first one is the

inverted-sandwich-type dinuclear transition metal com-

plexes and the second one is the open-lantern-type dinu-

clear transition metal complexes. Based on the electronic

structures that are thoroughly investigated in Refs. [28] and

[29], we study the electronic stress tensor of these mole-

cules. Our special attention is given to chemical bonds

between metal atoms and benzene for the former and those

between transition metals for the latter.

Dedicated to Professor Shigeru Nagase on the occasion of his 65th

birthday and published as part of the Nagase Festschrift Issue.

K. Ichikawa � A. Wagatsuma � A. Tachibana (&)

Department of Micro Engineering,

Kyoto University, Kyoto 606-8501, Japan

e-mail: akitomo@scl.kyoto-u.ac.jp

Y. I. Kurokawa

Quantum Chemistry Research Institute, Kyoto 615-8245, Japan

S. Sakaki

Fukui Institute for Fundamental Chemistry Organization,

Kyoto University, Kyoto 606-8103, Japan

123

Theor Chem Acc (2011) 130:237–250

DOI 10.1007/s00214-011-0966-0



This paper is organized as follows. In the next section,

we briefly explain the electronic stress tensor and related

values including the definition of our bond order. In Sect. 3,

we discuss our results of the electronic stress tensor anal-

ysis. Section 3.1 is for the inverted-sandwich-type dinu-

clear transition metal complexes and Sect. 3.2 is for the

open-lantern-type dinuclear transition metal complexes.

We summarize our paper in Sect. 4.

2 Theory and calculation methods

In the following section, we use quantities derived

from the electronic stress tensor to analyze chemical

bonds of transition metal complexes. This method

based on Regional Density Functional Theory and

Rigged Quantum Electrodynamics [12, 15, 16, 20]

provides useful quantities to investigate chemical

bonding such as new definition of bond order [21–23].

We briefly describe them below. (For other studies of

quantum systems with the stress tensor in a somewhat

different context, see Refs. [4, 6–11, 13, 14, 17–19].

See also Refs. [30, 31] for related discussion on energy

density).

The basic quantity in this analysis is the electronic

stress tensor density $sSð r!Þ whose components are

given by

sSklðr~Þ ¼ �h2

4m

X

i

mi w�i ðr~Þ
o2wiðr~Þ
oxkoxl

� ow�i ðr~Þ
oxk

owiðr~Þ
oxl

�

þ o2w�i ðr~Þ
oxkoxl

wiðr~Þ �
ow�i ðr~Þ

oxl

owiðr~Þ
oxk

�
; ð1Þ

where {k, l} = {1, 2, 3}, m is the electron mass, wiðr~Þ
is the ith natural orbital, and mi is its occupation

number.

By taking a trace of $sSð r!Þ; we can define energy

density of the quantum system at each point in space. The

energy density eS
sðr~Þ is given by

eS
sðr~Þ ¼

1

2

X3

k¼1

sSkkðr~Þ: ð2Þ

We note that, by using the virial theorem, integration of

eS
sðr~Þ over whole space gives usual total energy E of the

system:
R

eS
sðr~Þdr~¼ E.

Now, we define bond orders as this energy density

eS
sðr~Þ at ‘‘Lagrange point’’ between the two atoms [21].

The Lagrange point r~L is the point where the tension

density s~Sðr~Þ given by the divergence of the stress

tensor

sSkðr~Þ ¼
X

l

ols
Sklðr~Þ

¼ �h2

4m

X

i

mi w�i ðr~Þ
oDwiðr~Þ

oxk
� ow�i ðr~Þ

oxk
Dwiðr~Þ

�

þ oDw�i ðr~Þ
oxk

wiðr~Þ � Dw�i ðr~Þ
owiðr~Þ
oxk

�
; ð3Þ

vanishes. Namely, sSkðr~LÞ ¼ 0. s~Sðr~Þ is the expectation value

of the tension density operator ŝ~sðr~Þ; which cancels the

Lorentz force density operator
^
L~ðr~Þ in the equation of motion

for stationary state [12]. Therefore, we see that s~Sðr~Þ expresses

purely quantum mechanical effect, and it has been proposed

that this stationary point characterizes chemical bonding [21].

Then, our definitions of bond order are

be ¼
eS
sABðr~LÞ

eS
sHHðr~LÞ

: ð4Þ

One should note we normalize by the value of a H2 mol-

ecule calculated at the same level of theory (including

method and basis set).

We use Molecular Regional DFT (MRDFT) package

[32] to compute these quantities introduced in this section.

The electronic structure data for the input of the MRDFT

package are computed by GAMESS package [33] with

CASSCF method in Refs. [28] and [29] (We refer these

papers for the details of the CASSCF calculation). In these

calculations, core electrons of transition metals are

replaced with Stuttgart–Dresden–Bonn effective core

potentials and valence electrons are represented with a

(311111/22111/411/1) basis set [34, 35]. For C, N, and H,

we use cc-pVDZ basis sets [36], and augmented functions

are added to N. Some part of the visualization is made

using PyMOL Molecular Viewer program [37] and Mole-

kel program [38].

3 Results and discussion

3.1 Inverted-sandwich-type dinuclear transition metal

complexes

In this section, we discuss the results for the inverted-

sandwich-type dinuclear transition metal complexes. The

structures of the complexes to which we apply the

electronic stress tensor analysis are shown in Fig. 1. They

are model compounds (l-g6: g6-C6H6)[M(AIP)]2

(AIPH = (Z)-1-amino-3-imino-prop-1-ene) with M = V,

Cr, Mn and Fe, which have been studied in Ref. [28]. We

refer to them as MBV, MBCr, MBMn, and MBFe respec-

tively. In Ref. [28], it has been shown that the electronic

structure of the synthesized complexes, (l-g6: g6-C6H5CH3)
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(a) (b)

(c) (d)

Fig. 1 Structures and bond

order be for the inverted-

sandwich-type dinuclear

transition metal complexes:

a MBV, b MBCr, c MBMn and

d MBFe. A bond line is drawn

between two atoms when a

Lagrange point is found

between them and our energy

density-based bond order be (eq.

(4)) is shown by color and the

number on the bond
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[Cr(DDP)]2 (DDPH = 2-(4-{(2,6-diisopropylphenyl)imino}

pent-2-ene) [39], (l-g6: g6-C6H5CH3)[V(DDP)]2 [40] and

(l-g6: g6-C6H6)[Cr(DDP)]2 [41], are very well modeled by

MBCr and MBV. In particular, the observed very high-spin

state of septet for the Cr-complex and quintet for the

V-complex can be reproduced by these model compounds.

Also, it has been predicted that the Mn-complex and Fe

complex have spin state of nonet and singlet respectively.

We refer Ref. [28] for more details of the computational

methods and results.

(a) (b)

(c) (d)

Fig. 2 Close-ups of Fig. 1 at

the benzene and metal atoms:

a MBV, b MBCr, c MBMn and

d MBFe
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Fig. 3 The left panel shows the largest eigenvalue of the stress tensor

(color map) and corresponding eigenvector (black rods) of MBV on

the plane including the labeled atoms (see Fig. 2 for the number in the

label). As for the eigenvectors, the projection on this plane is plotted.

The black solid line denotes a contour where the eigenvalue is zero.

The right panel shows the tension on the same plane. The tension

vectors are normalized, and the projection on this plane is plotted. The

norm is expressed by the color of the arrows. Also, the locations of

the Lagrange point are marked by the black diamonds
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Using the results of CASSCF calculation carried out by

GAMESS package [33] in Ref. [28], we compute the

electronic stress tensor and derived quantities as explained

in Sect. 2. We first show the result of the Lagrange point

search in Fig. 1. The parts including benzene and transition

metals in the complexes are enlarged in Fig. 2. We draw a

bond line between two atoms when a Lagrange point is

found between them and compute our energy density bond

order be (Eq. (4)), which is shown by the number on the

bond.

Most notable feature of this result can be seen at the

bonds between benzene and the metal atom. We find a

Lagrange point for every pair of the metal atom and the C

atom in benzene for MBV, MBCr, and MBMn. As regards

MBFe, however, it is found for only two out of six Fe–C

pairs. In contrast, the ligand parts are almost same for all of
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0.10Fig. 4 The stress tensor and

tension of MBCr plotted in the

same manner as Fig. 3
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0.10Fig. 5 The stress tensor and

tension of MBMn plotted in the

same manner as Fig. 3
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0.10Fig. 6 The stress tensor and

tension of MBFe plotted in the

same manner as Fig. 3. There is

no Lagrange point between

Fe(1) and C(13)
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the complexes. Hence, we focus on chemical bonds

between metal atoms and benzene in the following.

We next show the electronic stress tensor and tension. In

Fig. 3, the case of MBV is displayed in the plane including

a V atom and two C atoms in the benzene. As for the

electronic stress tensor, we show the largest eigenvalue and

corresponding eigenvector in the left panel. The sign of the

eigenvalue tells whether electrons at a certain point in

space feel tensile force (positive eigenvalue) or compres-

sive force (negative eigenvalue), and the eigenvector tells

the direction of the force. The largest eigenvalue is con-

sidered to give the directionality of the chemical bond. In

the region between the C atoms, we see that there is a

positive eigenvalue region (shown in red) and eigenvectors

form a bundle of flow lines, which connects the C atoms.

This pattern is called ‘‘spindle structure’’ that characterizes

the covalent bond [15]. In the region between the C and V

atoms, we can again see a bundle of flow lines that con-

nects two atoms but the eigenvalue is negative (shown in

blue). We call this pattern ‘‘pseudo-spindle structure’’.

Now, we turn to the tension vector field, which is shown in

the right panel. We see that tension vectors basically go out

from nuclei in a spherically symmetric manner. These

vectors sharply change their direction where the vectors

from different nuclei meet. This sharp change creates some

surface-like structures in the tension field, and they seem to

separate space into subspaces to which atoms in a molecule

belong. This surface is called ‘‘Lagrange surface’’ [20]. In

the case of MBV, Lagrange surface always includes a

Lagrange point where the tension vanishes.

The cases of MBCr and MBMn are shown in Figs. 4 and

5, respectively. They have a same pattern as MBV: the

spindle structure between the C atoms, the pseudo-spindle

structure between the C and the metal atom, and a

Lagrange point between each atom pair. As for MBFe,

shown in Figs. 6 and 7, the stress tensor has the same

pattern but, as mentioned earlier, there are some metal-C

pairs without a Lagrange point. One may not be able to tell

the difference between Figs. 3, 4, 5, and Figs. 6 or 7 by

visual inspection. In fact, however, the norm of tension

vector goes down 10-10 or smaller at the Lagrange point

whereas we cannot find the norm smaller than 10-5

between Fe(1) and C(13) or C(15). This is the reason why

we judge there is no Lagrange point between these atom

pairs.

From the view point of the electronic stress tensor, we

may conclude that the V, Cr, and Mn complexes have

similar features but the Fe complex is slightly different. We

now would like to compare this point with the conventional

MO analysis. The natural orbitals obtained in the study of

Ref. [28] are shown in Figs. 8, 9, and 10 for MBCr, MBMn,

and MBFe, respectively. We only show the orbitals that are

relevant to the metal–benzene bond. We follow the notation

of Ref. [28] regarding the orbital label so the numbering

begins from 3. The occupation numbers are given in the

parentheses. More detailed occupation numbers are given

in Table 1, which is reproduced from Ref. [28] for con-

venience. From Figs. 8 and 9, it is easy to specify bonding

and anti-bonding orbitals for MBCr and MBMn, respec-

tively: /3 and /4 are bonding orbitals and /13 and /14 are

anti-bonding orbitals. The situation is not so clear for

MBFe. /3 can be specified as bonding and /13 and /14 as

anti-bonding but /7 can be regarded to have bonding

orbital feature in addition to /4. In other words, although

/5 to /12 of MBMn have been assigned to non-bonding-

type orbitals in the formal classification [28], /7 of MBFe,

in fact, is not 100% non-bonding and carries some bonding

orbital nature. Such difference between MBFe and other

three complexes may be reflected in the difference in the

Lagrange point pattern we see above.

Finally, we quantify the relative strength of the metal–

benzene bond among these complexes by the MO-based

bond order and by the energy density-based bond order be.

We are concerned with whether two ways give a consistent

result. As is done in Ref. [28], bond order can be defined by

the half of the difference between the sum of occupation
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0.10Fig. 7 The stress tensor and

tension of MBFe plotted in the

same manner as Fig. 3 on the

different plane from Fig. 6.

There is no Lagrange point

between Fe(1) and C(13)/C(15)
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numbers of bonding orbitals and that of anti-bonding

orbitals. Then, the bond order of MBV, MBCr, and MBMn

is respectively 1.60, 1.34, and 1.07 (see Table 1) and the

ratio is 1 : 0.84 : 0.67. As for be; it would be reasonable to

sum be of metal-C bonds to obtain the relative strength

among MBV, MBCr, and MBMn. be for the metal–benzene

bonds are shown in Fig. 2. By symmetry, it is sufficient to

add three of them. Then, the ratio of MBV to MBCr to

MBMn regarding the metal–benzene bond is given by

(0.26 ? 0.24 ? 0.23) : (0.21 ? 0.20 ? 0.20) : (0.20 ?

0.18 ? 0.16) = 0.73 : 0.61 : 0.54 or 1 : 0.84 : 0.74. This is

in reasonable agreement with MO-based bond order. The

MO bond order for MBFe is not calculated because of the

ambiguity in the bonding orbital as described earlier, but

since the occupation number of anti-bonding orbital /14 is

considerably larger for MBFe than for MBMn, the metal–

benzene bond in MBFe should be weaker than that of

MBMn. It is also not capable to compare quantitatively

MBFe and others using be due to the different Lagrange

point patterns between them. However, the absence of the

(1.67) (1.66) (1.00) (1.00)

(1.00) (1.00) (1.00) (1.00)

(0.33) (0.34)

Fig. 8 Natural orbitals that are

relevant to the metal–benzene

bonds of MBCr. Their

occupation numbers are shown

in parentheses
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Lagrange point in MBFe suggests that the metal–benzene

bond in MBFe is weaker than that in MBMn.

3.2 Open-lantern-type transition metal complexes

In this section, we discuss the results for the open-lantern-

type dinuclear transition metal complexes. The structures

of the complexes to which we apply the electronic stress

tensor analysis are shown in Fig. 11. They are model

compounds [M(R1NC(R2)NR3)2]2 (R1 = R2 = R3 = H)

with M = Cr and Mo, which have been studied in Ref.

[29]. We refer to them as MCr and MMo respectively.1

In Ref. [29], it has been shown that the electronic structure

of the synthesized complexes, [Cr(R1NC(R2)NR3)2]2

(R1 = Et, R2 = Me, R3 = tBu), is very well modeled by

MCr. The Cr–Cr distance is calculated to be 1.855 Å,

(1.53) (1.54) (1.00) (1.00)

(1.00) (1.00) (1.00) (1.00)

(0.47) (0.46)(1.00) (1.00)

Fig. 9 Natural orbitals that are

relevant to the metal–benzene

bonds of MBMn. Their

occupation numbers are shown

in parentheses

1 They are called M1 and Mo1 in Ref. [29].
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which is moderately shorter than the experimental value of

1.960 Å. Also, the bond order of the Cr–Cr bond is cal-

culated to be 2.532, much smaller than the formal bond

order of 4. This can explain the fact that the complex is

easy to dissociate into two mononuclear complexes in

solution. We refer Ref. [29] for more details of the com-

putational methods and results.

Using the results of CASSCF calculation carried out by

GAMESS package [33] in Ref. [29], we compute the

electronic stress tensor and derived quantities as explained

(1.87) (1.86) (1.00) (1.00)

(1.69) (1.60) (1.04) (0.96)

(0.43) (0.54)(1.05) (0.96)

Fig. 10 Natural orbitals that are

relevant to the metal–benzene

bonds of MBFe. Their

occupation numbers are shown

in parentheses
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in Sect. 2. The result of the Lagrange point search is shown

in Fig. 11.

We would like to focus on the metal–metal bond for

these complexes. Let us begin by studying the bond orders.

The energy density bond order be for Cr–Cr is 1.42 and that

for Mo–Mo is 1.03. This is contrary to the MO bond order,

which is calculated to be 2.532 for Cr–Cr and 3.412 for

Mo–Mo [29]. Such a discrepancy is suspected to come

from our definition of bond order. As is defined by Eq. (4),

our bond order be is defined from the energy density

evaluated at the Lagrange point. It is not difficult to

imagine a type of chemical bond that cannot be well

characterized by a single point between two atoms. This is

quite likely to be true for chemical bonds where spatially

extended d-orbitals are involved; especially, in cases dp-dp

and dd-dd, interactions are prominent.

A possible solution to this problem is defining the bond

order by integration of the energy density over some sur-

face. The most natural choice of this surface would be a

‘‘Lagrange surface’’ [20] that is constructed from a family

of lines, which going out from a Lagrange point (if a

Lagrange surface includes a Lagrange point). Namely, we

define bond order of the bond between atoms A and B as

beðSÞ ¼
R
SAB

d2reS
sðr~ÞR

SHH
d2reS

sðr~Þ
; ð5Þ

where SAB denotes the Lagrange surface between atoms A

and B. As is the cases of be (Eq. (4)), we normalize by the

value of the hydrogen molecule.

Unfortunately, however, this Lagrange surface is not so

easy to define numerically. Hence, we instead take the

surface integral over the plane that includes a Lagrange

point and is perpendicular to the axis connecting two

atoms. Note that such a plane coincides with a Lagrange

surface in the case of homonuclear diatomic molecules.

Also note that in our case of MCr and MMo, the Lagrange

surface between the metal atoms should be very close to

such a plane due to the symmetry.

Another thing we have to determine is the region on the

plane over which we integrate the energy density. This is

because if we integrate all over the plane, we may count

energy density, which is associated with other bonds. We

avoid this possibility by integrating only in the region

where the eigenvector of the largest eigenvalue of the

electronic stress tensor is perpendicular to the plane. There

could be more than two disconnected regions with such a

property, but, of course, we only integrate over the region

including the Lagrange point. This criterion for the inte-

gration region is motivated by the fact that the flow of

eigenvectors connecting two atoms is considered to

embody a chemical bond.

Table 1 Occupation numbers of the natural orbitals that are relevant

to the metal–benzene bonds of the inverted-sandwich-type complexes

MBV MBCr MBMn MBFe

/3 1.7968 1.6660 1.5312 1.8710

/4 1.8018 1.6639 1.5391 1.8633

/5 1.0000 1.0031 1.0001 1.0045

/6 0.9980 1.0020 1.0000 0.9956

/7 0.9946 0.9977 1.0010 1.6929

/8 0.9967 0.9996 1.5952

/9 1.0000 1.0000 1.0445

/10 1.0000 1.0000 0.9571

/11 1.0000 1.0450

/12 1.0000 0.9564

/13 0.2052 0.3344 0.4676 0.4336

/14 0.2029 0.3362 0.4615 0.5409

After Table 2 of Ref. [28]

(a) (b)

Fig. 11 Structures and bond

order be for the open-lantern-

type dinuclear transition metal

complexes: a MCr and b MMo.

A bond line is drawn between

two atoms when a Lagrange

point is found between them and

our energy density-based bond

order be (eq. (4)) is shown by

color and the number on the

bond
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Let us now study the concrete cases of MCr and MMo.

Fig. 12 shows the cross-sections of the Cr–Cr bond and the

Mo–Mo bond by the plane discussed earlier. In detail,

energy density distribution and the eigenvector of the

largest eigenvalue of the electronic stress tensor are plotted

on the plane that includes the Lagrange point of the metal–

metal bond and is perpendicular to the bond axis. The

Lagrange point is located at the origin, and the energy

density is normalized by the value at that point. The energy

density is shown by yellow color map and also by the

contours. Since the projection of eigenvectors on this plane

is shown by black rods, if the eigenvectors are perpendic-

ular to the plane, they are expressed by dots. Then, the

regions surrounded by the blue dashed lines (where we

cannot see rods) correspond to the regions where

eigenvectors are virtually perpendicular to this plane. The

blue dashed lines are contours on which the perpendicular

component of the eigenvector is 0.9. As mentioned previ-

ously, to calculate the bond order, we shall integrate the

energy density over the region surrounded by the blue

dashed line, which contains the Lagrange point. This is the

region located at the central part of the figure. Note that this

region surrounds the contour for 0.1 of the normalized

energy density (thicker red solid line). Therefore, if we

integrate the energy density over the region, most of the

energy density associated with this bond can be taken into

account.

Here, we report the results of the integration. beðSÞ for

Cr–Cr is 2.92 and that for Mo–Mo is 3.13. Before inte-

gration, namely in terms of be; Cr–Cr is calculated to be
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Fig. 12 Energy density distribution and the eigenvector of the largest

eigenvalue of the electronic stress tensor of (a) MCr and (b) MMo.

They are plotted on the plane that includes the Lagrange point of the

metal–metal bond and is perpendicular to the bond axis. The

Lagrange point is located at the origin. The yellow color map shows

the energy density which is normalized by the value at the Lagrange

point. The energy density is also shown by the contours. The thicker
red solid line is for 0.1 of the normalized energy density, and the

thicker red dashed line is for 0.9. The other contours denote values at

intervals of 0.1 between them. As for the eigenvectors, the projection

on this plane is shown by black rods. Then, the regions without rods

surrounded by the blue dashed lines correspond to the regions where

eigenvectors are virtually perpendicular to this plane. The blue dashed
lines are contours on which the perpendicular component of the

eigenvector is 0.9
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Fig. 13 The stress tensor and

tension of MCr plotted in the

same manner as Fig. 3
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stronger than Mo–Mo but after integration, in terms of

beðSÞ; Cr–Cr is calculated to be weaker than Mo–Mo, which

is consistent with the MO-based bond order calculation.

The relative strength measured by be turns out to be

reversed from the one measured by beðSÞ because the energy

density distribution in Mo–Mo is broader than that of

Cr–Cr (see Fig. 12). This is again consistent with the MO

analysis of Ref. [29], which has concluded the spatial

extension of d-orbitals of Cr is less than that of Mo and

with earlier literature [42].

In addition, we check that relative strength of the metal–

benzene bond among MBV, MBCr, and MBMn, which have

been analyzed in Sect. 3.1, does not change if we use beðSÞ
instead of be. We have seen in Sect. 3.1 that the ratio of

MBV to MBCr to MBMn regarding the metal–benzene bond

is 1 : 0.84 : 0.74 when we use be. When we use beðSÞ; the

ratio is 1:0.89:0.76, preserving the same ordering. This is

consistent with the fact that these bonds do not involve

spatially extended d-orbitals.

We would like to end this section by examining the

electronic stress tensor of the metal-metal bond. The results

are shown in Figs. 13 and 14. They are drawn on the plane

including two metal atoms and the angle between the plane

of Fig. 12 is 90�. As for the Cr–Cr bond, we see flow lines

that connect the Cr atoms with positive eigenvalue region,

that is, a spindle structure. As for the Mo–Mo bond, the Mo

atoms are similarly connected by the flow lines of eigen-

vectors and we see the positive eigenvalue region but it is

not simply connected. In particular, it takes negative value

at the Lagrange point. We may say this is a spindle

structure but it partly has some feature of a pseudo-spindle

structure.

To discuss the negative eigenvalue region found in the

Mo–Mo bond, it is instructive to look at the C–C bonds of

C2H6, C2H4 and C2H2. This has been investigated in Ref.

[16] but we show the results in Fig. 15 for convenience. As

we can see there, while C2H6 and C2H4 have spindle

structures, C2H2 has a pseudo-spindle structure.2 The

negative eigenvalue of C2H2 is caused by the compressive

stress nearby the C nuclei. In general, the stress tensor has a

large negative eigenvalue in radial direction in neighbor-

hood of a nucleus due to the dominance of the attractive

Coulomb force. In the case of C2H2, the bond length is too

short that the internuclear region is immersed under the

atomic compressive stress [16]. If we regard C2H6, C2H4,

and C2H2 as a series which changing from a spindle

structure to a pseudo-spindle structure, the Mo–Mo bond in

MMo may correspond to the stage between C2H4 and C2H2.

Of course, since they have totally different shell structures,

the direct comparison does not make sense. However, it

stimulates us to look for other compounds with stronger/

weaker Mo–Mo bonds and see whether they produce

pseudo-spindle/spindle structures. This is similar for the

Cr–Cr bond. Whether stronger Cr–Cr bond than that of MCr

produces (partly) pseudo-spindle structure is a very inter-

esting question to ask. Now, final comments are in order.

We have just mentioned that when considering the series

which changes from a spindle structure to a pseudo-spindle

structure, it is non-sense to discuss different types of atoms

on equal footing because of difference in shell structures.

Meanwhile, we have shown that the energy density, which

is dynamically well-defined quantity, is capable of showing

the Mo–Mo bond is stronger than the Cr–Cr bond. Then,

the spindle/pseudo-spindle structure series may be dis-

cussed in a unified manner using the energy density and

stress tensor. To do this, it is also essential to clarify how

the stress tensor changes as the shells pile up and its effect

on chemical bonds.
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Fig. 14 The stress tensor and

tension of MMo plotted in the

same manner as Fig. 3

2 If calculated at the cc-pVDZ level, we see small regions with

positive eigenvalue just like those of the Mo–Mo bond in Fig. 14.

Since such regions do not appear at 6-31G(d,p), cc-pVTZ and cc-

pVQZ levels, we believe they are numerical artifacts in the case of

C2H2.
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4 Summary

In this paper, we have investigated the electronic structure

of two types of transition metal complexes, the inverted-

sandwich-type and open-lantern-type, by the electronic

stress tensor. In particular, the bond order be measured by

the energy density which is defined from the electronic

stress tensor has been studied and compared with the

conventional MO-based bond order. We have also studied

the patterns found in the largest eigenvalue of the stress

tensor and corresponding eigenvector field, the ‘‘spindle

structure’’ and ‘‘pseudo-spindle structure’’. They are both

defined by a bundle of flow lines formed by the eigen-

vectors that connects two atoms, and the former has the

positive eigenvalue while the latter has the negative

eigenvalue.

As for the inverted-sandwich-type complex, we have

investigated V, Cr, Mn, and Fe complexes. Our bond order

be calculation has shown that relative strength of the metal–

benzene bond among V, Cr, and Mn complexes is

V [ Cr [ Mn, which turned out to be same as the

MO-based bond order as was found in Ref. [28]. The Fe

complex has not been investigated in this context due to

the different pattern of the Lagrange points (on which the

energy density is computed to define be). This is in a sense

also consistent with the MO analysis because the bonding/

non-bonding orbital assignment for the Fe complex was

rather ambiguous and not as clear as that for the other three

complexes. We have also studied the eigenvector pattern of

the largest eigenvalue of the stress tensor. The bond

between the metal atom and C atom of benzene is char-

acterized by the pseudo-spindle structure for all of the

complexes. It was found that some of the pseudo-spindle

structures were not associated with a Lagrange point.

Regarding the open-lantern-type complex, we have

investigated Cr and Mo complexes. In this case, be calcu-

lation has shown that relative strength of the metal-metal

bond between Cr and Mo complexes is Cr [ Mo, which is

reversed order to the MO-based bond order calculated in

Ref. [29]. Suspecting that be; which measure the energy

density at a single point, is not appropriate for a bond

involving spatially extended d-orbitals, we have proposed a

modified definition of the energy density-based bond order,

beðSÞ, Eq. (5). This new definition measures the energy

density integrated over the ‘‘Lagrange surface’’ between

two atoms and is able to take into account spatial extent of

the energy density. Actually, using beðSÞ, the relative

strength of Cr–Cr and Mo–Mo was calculated to be

Cr \ Mo, which is consistent with the MO-based bond

order. Finally, we have studied the eigenvector pattern in

the regions of Cr–Cr and Mo–Mo bonds. The Cr–Cr was

found to be characterized by a positive eigenvalue region,
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in the same manner as Fig. 3. Calculated by HF/cc-pVQZ [36]
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which is spindle structure, while the Mo–Mo has shown

both positive and negative regions. It seems to be charac-

terized by a spindle structure but also has a pseudo-spindle

nature.

Although our study here was carried out for limited

types of transition metal complexes, we were able to gain

new insight into the eigenvector field pattern of the largest

eigenvalue of the electronic stress tensor and the Lagrange

point patterns, which had not been found in our previous

studies of s- or p-block compounds. We also have con-

firmed that our energy density-based bond order can

properly describe the relative strength of chemical bonds

involving d-orbitals by the surface integration. Further

study of transition metal compounds in particular including

metal-metal bonds will lead us to deepen our understanding

of the electronic stress tensor and nature of d-bonding.
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